I	Approximate Inductance of a Toroid	
	Finding the magnetic field inside a toroid is a good example of the power of Ampere's law. The current enclosed by the dashed line is just the number of loops times the current in each loop. Amperes law then gives the magnetic field at the centerline of the toroid as $B2\pi r = \mu NI$ or $B = \frac{\mu NI}{2\pi r}$	
The application of <u>Faraday's law</u> to calculate the	The <u>inductance</u> can be calculated in a manner similar to that for any <u>coil of wire</u> . voltage induced in the toroid is	Index Magnetic
$Emf = -N \frac{\Delta \Phi}{\Delta t} = -NA\frac{\Delta B}{\Delta t}$		field concepts
This can be used with the magnetic field expression above to obtain an expression for the inductance.		
$L \approx \frac{\mu N^2 A}{2\pi r} = \frac{A}{r} = \text{cross-sectional area}$		
Toroidal radius r = $m = m = m = m$ cm with $M = m$	turns,	
Coil radius = cm gives area A =	cm^2.	
Relative <u>permeability</u> of the core $k = [n]$,		
Then the inductance of the toroid is approximatel	У	
$\mathbf{B} = \mathbf{Henry} = \mathbf{mH}.$		
This is a single purpose calculation which gives you the inductance value when you make any change in the parameters.		
Small inductors for electronics use may be made with air cores. For larger values of inductance and for transformers, iron is used as a core material. The relative permeability of magnetic iron is around 200.		

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/indtor.html